

Geospatial Measurement of Air Pollution: The GMAP

Introduction

Today we will cover:

- 1. GMAP technical overview
- 2. The EPA and the GMAP
- 3. GMAP industry applications

The Vehicle

- The GMAP is a high tech mobile air quality monitoring vehicle
- Ability to cover large areas in a short amount of time

Inside the GMAP

- Multi-pass UV optical spectrometer provides 1 second interval of real time data
- Low detection limits able to analyze 14 constituents at the ppb (parts per billion) level

2022

Detectable Compounds

Chemical	Range (ppb _v)			
VOC ⁽¹⁾	5 – 2,000,000			
Benzene	2 – 1,000			
Toluene ⁽²⁾	5 - 250			
Ethylbenzene ⁽²⁾	5 - 500			
m-xylene ⁽²⁾	5 - 500			
o-xylene ⁽²⁾	5 - 500			
p-xylene ⁽²⁾	2 - 250			
Ozone	5 - 500			
Nitric Oxide	2 - 500			
Sulfur Dioxide	2 - 500			
Nitrogen Dioxide	15 – 1,000			
Styrene	2 - 250			
Ammonia	2 - 250			
Formaldehyde	17.5 – 1,000			
1,3-Butadiene	5 - 500			

(1) The VOC monitor is a Photoionization detector (PID) and is separate of the DV3000 monitoring device.

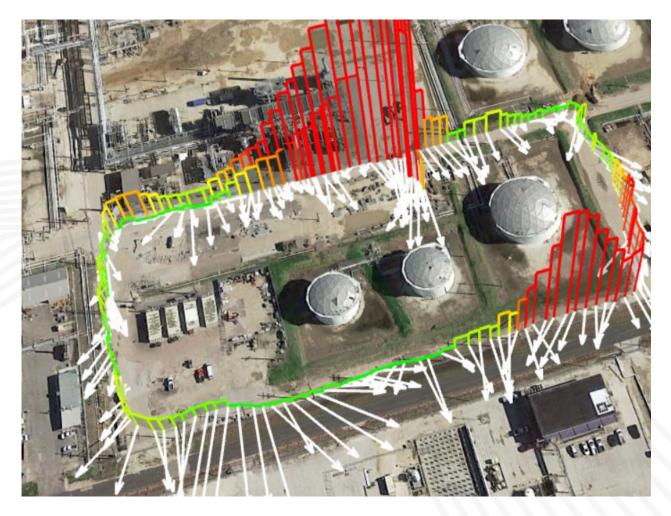
(2) The DV3000 Manufacturer suggests limits of chemical in the 2-500 ppb level. U.S.EPA experience suggests higher, sometimes significantly higher values are expected.

SPONSORED BY:

Inside the GMAP

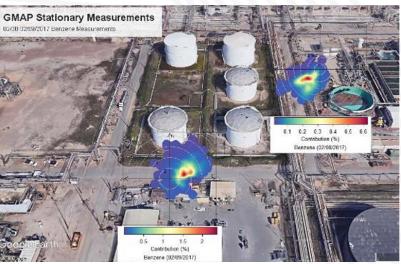
- Real-time meteorological and geospatial monitoring
- GPS allows the GMAP to track position and speed over the ground
- A met station tracks wind speed and direction

GPS 3 Axis Accelerometer	0	O All Veath	RN erStatio	IAR on® 150V	R . O	2 Axis Compass
Ultrasonic Transducers	2				5	
Thermistor	0					Barometric Pressure
12 VI Supp Curre	oly	0	0	ASCI RS-42	na deli	0183 over S-232,



Mapping Capabilities

- Overlays a satellite image with 0 data captured by the UV spectrometer, GPS, and met station
- Maps can be generated within minutes!


Mapping Capabilities

Bray EMERSON MRC Global

- Mobile mapping results display wind direction, speed, and relative concentration to identify sources
- Stationary mapping results used to generate polar plots
 - Illustrate the direction to the source
 - Shows relative concentration
- Used to isolate and attribute sources to specific facilities

SPONSORED BY:

2022

Additional Map Examples

Additional Map Examples

The EPA and the GMAP

2022

- In early 2022 the EPA launched the Pollution Accountability Team (PAT)
- Mission to provide strong environmental compliance using the GMAP
- EPA will be exercising right to conduct unannounced inspections
- Targets are going to be any facilities within a few miles of:
 - Schools
 - Public parks or event centers
 - Anywhere with heavy civilian foot traffic

Application to Industry

• GMAP can be valuable in defending against a surprise inspection

- Fortify fence line monitoring
- Identify foreign emissions
- Support GMAP with boots on ground tactics to find and pinpoint major sources inside the fence line
 - OGI (Optical Gas Imaging) Cameras
 - Hydrocarbon analyzers
- Use the GMAP to oversee different events or repeat sources:
 - Barge or railcar loading/unloading
 - Blast pad activities
 - Vehicle loading stations
 - General maintenance

- Tanks
- Sumps
- Vapor Recovery Systems
- Sewer Systems

2022

More Examples

- Pre-screen monitoring in preparation of planned agency GMAP monitoring.
- Comparative monitoring during agency GMAP monitoring.
- Support for negotiating Consent Decrees with FLM.
- Support of FLM studies and FLM program implementation.
- Routine supplemental monitoring (e.g., quarterly screening of equipment) as an enhancement to existing LDAR, BWON, FLM, and Community Relations Management programs.
- Baseline community monitoring.
- Offsite monitoring during an emission event.

Conclusion

- With the technological potential and advantages of the GMAP, it is going to be the next generation for air quality monitoring.
- Be prepared to defend against a surprise inspection by the EPA! Ο

Thank you! **Any Questions?**

